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Abstract. We suggest and implement a new Monte Carlo strategy for correlated models involving fermions
strongly coupled to classical degrees of freedom, with accurate handling of quenched disorder as well.
Current methods iteratively diagonalise the full Hamiltonian for a system of NN sites with computation
time 7n ~ N*. This limits achievable sizes to N ~ 100. In our method the energy cost of a Monte Carlo
update is computed from the Hamiltonian of a cluster, of size N., constructed around the reference site,
and embedded in the larger system. As MC steps sweep over the system, the cluster Hamiltonian also
moves, being reconstructed at each site where an update is attempted. In this method 7n n, ~ NN2. Our
results are obviously exact when N. = N, and converge quickly to this asymptote with increasing N,
particularly in the presence of disorder. We provide detailed benchmarks on the Holstein model and the
double exchange model. The ‘locality’ of the energy cost, as evidenced by our results, suggests that several
important but inaccessible problems can now be handled with control. This method forms the basis of our
studies in Europhys. Lett. 68, 564 (2004), Phys. Rev. Lett. 94, 136601 (2005), and Phys. Rev. Lett. 96,
016602 (2006).

PACS. 71.15.-m Methods of electronic structure calculations — 71.15.Pd Molecular dynamics calculations

—71.10.Fd Lattice fermion models

1 Introduction

The equilibrium physics of classical interacting systems is
by now very well understood. Quantum many body prob-
lems, involving strong interactions, however, remain diffi-
cult to solve with control. The focus of strong correlation
theory is on devising methods to handle these problems.
Techniques like density matrix renormalisation group [1]
(DMRG) and dynamical mean field theory [2] (DMFT),
for example, represent an advance in this direction. Prob-
lems where fermions are coupled to ‘classical fields’, e.g.,
large S spins, or ‘adiabatic’ phonons, are at an intermedi-
ate level of difficulty between purely classical systems and
quantum many body problems. The quantum degrees of
freedom are not directly interacting, so the difficulty with
an exponentially growing Hilbert space is absent, but “an-
nealing” the classical variables is much more difficult com-
pared to purely classical systems.

The adiabatic approximation, whereby some degrees of
freedom are treated as classical, is not novel. Several prob-
lems have been solved in the past by making this approx-
imation, e.g., in electron-phonon systems [3], or, in a dif-
ferent context, in the Car-Parrinello method [4], handling
coupled electronic and ionic degrees of freedom. The re-
cent interest lies in the application of this approach to sev-
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eral strong coupling lattice fermion models, and some de-
gree of success in understanding complex materials. Millis
and coworkers [5] studied electrons coupled to classical
spin and lattice (‘phonon’) degrees of freedom, to con-
struct an initial theory of the manganites using DMFT.
The approach was taken much farther by Dagotto and
coworkers [6] using ‘real space’ Monte Carlo techniques to
study ordering phenomena, phase coexistence, and disor-
der effects in a large family of correlation models pertinent
to the manganites. The method has been used extensively
also to explore magnetism in double exchange (DE) based
models [7]. For diluted magnetic semiconductors (DMS)
too much of the physics has been clarified by methods
which treat the doped magnetic moment as classical [8].
We ourselves have used the approach to study magnetism,
insulator-metal transitions and nanoscale phase coexis-
tence in disordered correlated electron models [9,10].

The adiabatic limit simplifies the many body problem
by casting it in the form of “non interacting” fermions
in the background of classical variables, {z} say, but
determining the distribution P{x} involves an expensive
computation. In the absence of any small parameter to
simplify the problem, computing P{xz} requires iterative
diagonalisation [11] of the fermion Hamiltonian and, for an
N site system, the computation time, 7y, increases as N4.
We will describe the standard exact diagonalisation based
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Monte Carlo (ED-MC) in the next section, here we just
note that the accessible sizes, N ~ 100, within ED-MC,
severely limits the ability of the method to resolve the
outstanding issues relating to transport, metal-insulator
transitions, and the effect of disorder in correlated sys-
tems.

There have been some attempts at overcoming the se-
vere finite size constraint in ED-MC. (7) Instead of exact
diagonalisation, it has been proposed that the energy of
fermions in the classical background can be estimated by
moment expansion of the density of states. This, in princi-
ple, allows access to N > 102, and has been used to study
the clean [12] and disordered [13] DE model. (i7) A ‘hy-
brid” Monte Carlo method, using dynamical evolution of
the classical variables, has been tried out [14] for a model
of competing DE and superexchange. (ii¢) We have pro-
posed a scheme [15], in the context of double exchange,
where the energy associated with the spin configuration
can be approximated by an explicit classical Hamiltonian
with couplings determined from a solution of the fermion
problem.

While the approximations above have allowed some ad-
vance in the context of double exchange, there is no equiv-
alent method available for handling phonon degrees of
freedom, or the combination of phonons and spins (as rele-
vant to manganites), or dilute strong coupling systems like
the DMS. There is the need for a general and computation-
ally transparent method that can handle models with arbi-
trary coupling and disorder, and systematically approach
the ‘exact’ answer. This paper proposes such a scheme.
We employ a variant of the exact diagonalisation strategy
using an embedded (travelling) cluster, that estimates the
energy cost of a Monte Carlo move by diagonalising the
smaller cluster rather than the full Hamiltonian. Since size
limitations are most severe in three dimension (3D), and
it is physically also the most relevant, most of the bench-
marks we provide are directly in 3D, where the test is most
stringent. However, exact numerical results, on large sizes,
needed for reference, are hard to obtain in 3D so we pro-
vide some size dependence in two dimensions (2D) as well
to illustrate the convergence properties of the method.

We will study two models, mainly in 3D, to pro-
vide some performance benchmarks on the travelling clus-
ter approximation (TCA). These are (i) the (disordered)
Holstein model, and (#¢) the double exchange model. They
are, respectively:
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The t are nearest neighbour hopping on a three dimen-
sional lattice. In Hy, the on site binary disorder ¢; assumes
value +A, u is the chemical potential and n; = cl-L c; is the
electron density operator (for spinless fermions), coupling
to the phonon coordinate z;. Hx = (K/2)Y,2? where
K =1 is the stiffness of the phononic oscillators. In Ho,
Jg is the Hunds coupling. The model is defined with ‘spin-
full’ fermions, but since we will use Jy /t — oo it will also
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lead to an effective spinless fermion problem. We set t = 1,
fixing our basic energy scale, and also i = 1.

2 Method

Let us start with the T"= 0 case to clarify the usual ap-
proach to these problems. Since we have earlier discussed
the ED-MC method in detail [15] we only provide a brief
outline here. There are several applications of ED-MC in
the context of manganite related models [11].

There are two (related) difficulties in solving strong
coupling adiabatic problems. (i) The probability of oc-
curence of a classical configuration is not explicitly known,
and is governed by the fermion free energy. Generating
these configurations involves the N* cost specified earlier.
Let us call this the “annealing problem”. (i7) Even for
a specified classical configuration, obtained via some an-
nealing technique, the electronic properties, e.g, the resis-
tivity, involves computing fermionic correlation functions
in a non trivial background. Since there is no analytic
theory for non interacting fermions in an arbitrary ‘land-
scape’, transport calculations have to implement the Kubo
formulae exactly. Our innovation in this paper is on the
annealing problem, we still depend on a numerical im-
plementation of linear response theory [15] to solve the
transport problem on large lattices.

Let us start with the annealing problem. If we are at
T = 0, the background in which the fermions move can
be determined by minimising the total energy (H) with
respect to the classical variables. Denote the classical con-
figuration as {n1,n2,...} = {n}, where n; = n(R;) and, in
case of multiple classical variables at each site, n; repre-
sents the full set of variables z;, S;, etc., at that site. The
key task is to determine (H) = E{n}.

If the coupling between the classical and quantum
variables is large, there is no perturbative result for the
fermion energy £{n}, and therefore no explicit functional
that we can minimise. This is where MC is used. The exact
diagonalisation based method uses the following strategy:
() Set up an arbitrary configuration {n} and compute the
energy £{n}. The fermion contribution is estimated by di-
rect diagonalisation while the classical contribution, Kz?
say, is explicit. (i7) Attempt an update, say at site R;,
by changing n; — 7. Compute the energy E{n’}. (i#i) If
AE = E{n'} — &{n} < 0, accept the move, if AE > 0,
and T # 0, accept the move with probability oce =4/7 .
(iv) Sweep over the system, initially to reach equilibrium
and then to compute thermal averages.

The method above is simply a use of the Metropolis
algorithm, with the complication of an expensive diag-
onalisation for every microscopic update. Since each lo-
cal update involves computational effort ~N3, the cost
of sweeping over the system leads to 75y ~ N*. One has
to multiply this with the cost of thermal averaging, and
disorder average (if needed).

We were motivated to ask if it is really necessary to
diagonalise the full Hamiltonian of the N = L3 system to
estimate the cost, AE, of a local move. Imagine a ‘large’
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system, (with L = 20, say, for arguments sake) and some
degree of ‘disorder’ seen by the electrons arising from the
classical thermal fluctuations or quenched disorder. Qual-
itatively, if the effect of a change, n; — 7}, does not ‘prop-
agate’ very far, as one would expect in a system with some
disorder, then the energy cost of the move should be cal-
culable from a Hamiltonian which involves only electronic
degrees of freedom in the ‘vicinity’ of R;. We will discuss
the analytic basis of such an argument separately, for the
Monte Carlo it only requires that we modify step (i¢) of
the ED-MC strategy, discussed earlier. We compute AE
as EA{n'} — EAn}, where E.{n} is the energy computed by
constructing a Hamiltonian of N. = L2 sites around R;,
and diagonalising this Hamiltonian in the background con-
figurations {n}. and {n'}., where the curly brackets, {},
refer to the configuration within the cluster. We will show
results on ‘equilibriation’ within the TCA approach in the
last section.

After equilibriation the fermion properties are com-
puted by diagonalising the full L3 Hamiltonian in the equi-
librium background. Transport properties are calculated
based on the spectrum and states obtained from these di-
agonalisation, using the Kubo formula [15].

3 Results

Apart from the electronic parameters, the two computa-
tional parameters in the problem are N and N.. In our no-
tation TCA(N : N.) implies MC for a N site system based
on a cluster of size N.. ED-MC obviously corresponds to
TCA(N : N). We assume a cube geometry, with periodic
boundary conditions (PBC) for both the system and the
cluster. Ideally one should have TCA(N : N) available
for large sizes and study convergence as N, — N. Un-
fortunately ED-MC can be done, with great effort, only
for sizes < 63, so TCA(N : N) will be rarely available at
large N and we have to analyse the approximation based
on the following checks.

(1) We study H; and Hs using ED-MC on the largest pos-
sible lattice, N = 63. With somewhat reduced ther-
mal averaging, and using scan in T (at fixed electron
density), or a scan in p (at fixed temperature), we
establish the “large size” exact results. We then use
TCA(N : N.) with N. = 33,43 and 5 to check the
convergence to TCA(N : N). We also provide results
for H; in 2D where larger linear dimensions can be
accessed within ED-MC and compare these results to
small L. based TCA.

(2) We study a “large” system, N = 83, and monitor the
trend in TCA(N : N.) with growing N, remaining in
the regime N, < N. We use N, = 33,43,5° to assess
the convergence of the results to an asymptote with
N, still < N.

(3) We compare the energy cost of actual microscopic MC
updates between ED-MC and TCA. We evolve a sys-
tem via TCA(8% : 43) but simultaneously compute
the energy cost of the updates via exact diagonalisa-
tion of the full 8% system. This is done by choosing a
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Fig. 1. The result of p variation in the clean Holstein model
at coupling A = 2.5 and T = 0.02 in 3D. The exact result,
with L = 6, is compared to results with L. = 3 and L. = 4.
Panel (a): the variation in electron density, showing the dis-
continuous jump from the Fermi liquid to a charge ordered
state, (b): the variation in charge order parameter with p, and
(c): the variance of the effective disorder (see text) seen by the
electrons. We have not used L. = 5 since the results on L. = 4
are already very close to ED with 63.

site randomly and computing both the exact 83 energy
cost and the L? energy cost whenever an update is at-
tempted at that site. This yields information on how
well TCA microscopically estimates the energy cost,
rather than at the level of system averaged properties.

3.1 Clean Holstein model

The Holstein model provides the minimal description of
coupled electron and phonon degrees of freedom and, in
the adiabatic limit, involves the following phases [16-18],
(i) a Fermi liquid (FL) metal, without any lattice dis-
tortions at T = 0, (#) a positionally disordered in-
sulating polaron liquid (PL) at strong coupling, and
(#4t) charge ordered insulating (COI) phases close to
n = 0.5. The physics of these phases has been discussed
earlier within DMFT, and we also discuss it in detail in
elsewhere [20-22]. Our intention here is to estimate the
effectiveness of TCA in capturing the known features of
the Holstein model as well as compare with exact MC
calculations.

Figures 1-3 show the variation in carrier density, n(u),
the order parameter S(m,7,7), defined further on, for
commensurate charge ordering, and the variance of the
‘effective disorder’, n? (defined further on), seen by the
electrons, with varying p at two temperatures. In a model
which has the possibility of phase separation, and ‘dis-
allows’ a certain density range, it is imperative to work
with constant u to map out the phase diagram. At the
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Fig. 2. Same as in Figure 1, except for T = 0.08. At this
higher temperature the coexistence jump is almost smoothed
out. The agreement between the exact result and TCA (6% : 4)
is even better here.

Fig. 3. Results in 2D, showing the same indicators as in Fig-
ure 1. System size L = 10.

specified T and p, TCA is used to obtain a family of
equilibrium phonon configurations, which are then used
to solve the full electron problem.

Figure 1 pertains to low temperature, T = 0.02, at
intermediate coupling, where there are two phases, (i) a
FL at low doping, n < 0.1, and (i) a commensurate COI
phase for 0.35 < n < 0.5, and a regime of phase sepa-
ration for n between ~0.1-0.35. Before analysing the size
dependence of the TCA results let us define the basic indi-
cators. Figure la shows n(u), including the ‘discontinuity’
due to phase separation. Figure 1b shows the COI order
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parameter S(m,m,7), computed from the structure fac-
tor S(q) = (1/N?) Zij<<ni><nj>>eiq‘(Ri*Ra‘), where (n;)
is the quantum average of n; in a MC configuration and
the outer angular brackets indicate average over config-
urations. Figure 1c shows the effective disorder based on
the following prescription: for the Holstein model the elec-
trons see a potential £ = €;— Az, where ¢; is the extrinsic
disorder and z$ is the structural distortion in an equilib-
rium MC configuration (« is a MC configuration index).
A crude measure of the ‘disorder’ seen by the electrons
is provided by the variance of the &; distribution, aver-
aged spatially and over MC configurations. If we denote
n; = & — &, where £ is the spatial average, then the effec-
tive disorder 72 = (n?). It is the thermal and configuration
averaged disorder that dictates the single particle scatter-
ing and transport properties. Our n? data in Figure 1c,
and later figures, quantify this disorder.

The data in Figures 1 and 2 are on a 62 system, using
clusters of 33, 43 and 63 itself to anneal the {z;}. Com-
paring the cluster size dependence of the various physical
quantities it is obvious that while the 33 cluster is unable
to accurately capture the effects in the 6% system, the re-
sults based on 4 are qualitatively similar to that of 6.
Please note that even-odd effects are significant in small
systems, and the error on using 3 is partly due to L.
being odd and partly due to L. being small.

The size difference between the 42 cluster and the full
system is a factor of 63/4% ~ 3.4. The ratio of the com-
putation time between ED-MC on 6% and TCA (62 : 43) is
~40, if the same extent of averaging is employed.

We have also studied the 2D Holstein model, Figure 3,
in the clean limit. We show this data in Figure 3 comparing
exact results on L = 10 with TCA using L. = 4,6,8. It is
clear that even with L. = 4 all the qualitative features in
the L = 10 ED-MC are reproduced. The correspondence
improves when we move from low temperature (7" = 0.02
shown here) to higher temperatures.

Let us revert to the 3D case, since our main target is a
usable scheme in three dimensions. At T' = 0.08, Figure 2,
the results based on 33 continue to differ from the exact 63
result but the 42 result is virtually indistinguishable from
the exact answer. The key to this lies in the large damping
of the electrons arising from thermal fluctuations, and at
this temperature the effect of the 43 finite size gap is no
longer relevant.

Figure 4 shows a different kind of result, where the
system is studied via TCA at constant density, n = 0.3,
at EP coupling A = 2.0, on a “large” system, L = 8, with
cluster size varying from 33-53. We obviously cannot do
an exact calculation on the 8% system, so the results in
Figure 4 are intended to check out () the convergence
of the TCA data to the N. = N asymptote with grow-
ing N, and (it) study the temperature dependence of this
convergence, since strong disorder, i.e., large n?, at high
temperature could make even the 33 based calculation vi-
able. In Figure 4 we directly compute the resistivity, using
a method described in an earlier paper [15], as well as n?
and the density of states N(er) at the Fermi level.
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Fig. 4. Holstein model in the metallic regime, A = 2.0 and
n = 0.3. Results with TCA(8% : L3), with L. = 3-5. Panel (a):
resistivity p(T"). Except at the lowest T, the results with L. = 4
and L. = 5 are virtually indistinguishable, while L. = 3
matches the large cluster data only at high T'. Panel (b): the
effective disorder seen by the electrons, and panel (¢): the den-
sity of states at the Fermi level.

Here again, the results based on 43 and 53 clusters are
virtually indistinguishable except at the lowest tempera-
ture. The result based on 32 is visibly different from that
on 43-5% at the lower temperatures, but converges to a
common value for T ~ 0.3, by which n? is quite large.
The results on 7? itself and N (ex) are quite similar for all
L. at all T, but the resistivity (which is a more stringent
comparison) differentiates the changing character of the
result with varying L.. We would like to draw a general
conclusion from these results, and back them up as we
discuss the disordered Holstein model in the next section.
If the single particle damping rate, I, arising out of n?
is comparable to the finite size gap, 12¢/L3, in the clus-
ter then the specific finite size features of the cluster are
smeared out and it mimics a ‘large’ system. So, annealing
the variables on the large system via TCA is effective if
I' > W/N,, where W is the bare bandwidth of the system.
For a fixed T (and extrinsic disorder) this condition can
be met by increasing L., while for a fixed L. the accuracy
increases as the net disorder (from thermal fluctuations
and extrinsic disorder) increases.

To substantiate this claim, as well as check the ability
of TCA to capture the ‘fingerprints’ associated with a spe-
cific disorder realisation, we next consider the disordered
Holstein model.

3.2 Disordered Holstein model

The key feature of the Holstein model is the possi-
bilty of ‘self-trapping’, i.e., polaron formation, when
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Fig. 5. Disordered Holstein: A = 2.0, A = 0.6, and n = 0.3,
exact results using 6° and TCA. TCA is based on L. = 3
and L. = 4. Panel (a). resistivity p(T'), panel (b). the effective
disorder n?, panel (c). the density of states at the Fermi level.

the EP coupling exceeds a certain threshold. The crit-
ical coupling for single polaron formation [19] in 3D is
Ac/t ~ 3.3, which implies that the polaron ‘binding en-
ergy’ E; = A\?/(2K) ~ 5.44t. This would imply that at
A = 2, where E, = 2t we should be far from any po-
laronic instability. This is indeed true in the absence of
disorder and Figure 4, for example, shows that the re-
sponse is metallic with dp/dT > 0. However, even weak
disorder, A = 0.6, has dramatic effect in the FL phase,
see Figure 5. This figure presents results on the disordered
Holstein model studied directly via ED-MC on 63, as well
as by TCA using 3% and 43 clusters on the 62 system.

In terms of the physical effect of disorder, the ED-MC
indicates that the interplay of disorder and EP coupling
can turn the system into a very bad metal (or even insu-
lator) with a large resistivity at 7' = 0, and dp/dT < 0
for T — 0, Figure 5a. The ‘effective disorder’ seen by the
electrons is large down to 7' = 0, Figure 5b, and there is a
pseudogap in the DOS, as evident from N(eg), Figure 5c.

The conversion of a FL (at A = 2.0,A = 0) into a
‘polaronic’ phase by weak disorder happens because the
density inhomogeneity created by weak disorder is dra-
matically amplified by strong EP coupling [21,23] leading
to strong localisation. However, all electronic states are
not strongly localised, as the spatial pattern, Figure 6,
and N(er), Figure 5c¢, indicate. Figure 6, discussed fur-
ther on, shows the thermally averaged density n,.

In contrast to our results on the clean Holstein model,
Figures 1, 2 and 4, notice that all the sizes, 3%, 4% and 63,
yield similar results on all the indicators, Figures 5a-—c.
While the 43 based results almost coincide with the exact
62 answer even the 33 based results capture all the qual-
itative features and even the numerical values reasonably
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Fig. 6. Thermally averaged density profile, top surface of a
6® system: comparing exact results on 6% with TCA. The top
row is for L. = 3, next for L. = 4 and lowest for L. = L = 6.
Temperature, left to right, are 0.3, 0.11, 0.01. The disorder
realisation {¢;} is the same in all cases.

accurately. The large effective disorder in the problem,
arising from the strong lattice distortions, x;, makes even
the 3% calculation acceptable. The 2 in this model is ~3.0
over the whole T range, comparable to the mazimum n?
in the clean problem, Figure 4b.

While the transport and spectral properties seem to
be adequately captured by TCA, does the method suc-
ceed in capturing the specific ‘fingerprint’ of a disorder
realisation, {¢;}? Figure 6 shows the thermally averaged
density pattern, n,, at three different temperatures (along
the row) computed via TCA using L. = 3 (first row),
L. = 4 (second row) and the exact, L. = 6 case (bottom
row). The TCA was run with the same realisation of dis-
order in all three cases. Remember that while the cluster
based update is used for the phonon degrees of freedom,
the final density field, n;, is calculated by diagonalising the
full Hamiltonian in the background of the quenched dis-
order and the phonon configurations obtained via TCA.
The cluster diagonalisation by itself cannot yield n;.

At first glance, the results of all three runs, compared
along a column, match well. At intermediate and high tem-
perature there is weak but still visible density contrast
and the results of all three schemes match very well. At
the lowest temperature, the contrast is strongest and, al-
though the correspondence along the third column is quite
striking, there are some minor variations between the pan-
els. This is partly because the MC based annealing is less
effective at low temperature due to the small acceptance
rate of moves. Apart from this generic difficulty with MC
calculations, we think the overall ability of TCA to cap-
ture the specific features of a disorder realisation (and not
just system averaged properties) is quite impressive.

Now consider using TCA on large sizes, L = 8, as
in Figure 4, for the disordered problem. Figure 7 shows
TCA based results using L. = 3,4,5 to solve the L = 8
problem, and Figure 8 shows the associated density profile.
As stated before it is impossible to do ED-MC on 82, so
the data here is meant to indicate the convergence of the
TCA based results to the N, — N asymptote, although
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Fig. 7. Disordered Holstein model, A = 2.0 and n = 0.3,
A = 0.6. Results with TCA(8% : L2), with L. = 3-5. Panel (a):
resistivity p(T), (b): the effective disorder seen by the electrons,
and (c) the density of states at the Fermi level.

the exact result at N, = N is not available. The effective
disorder, Figure 7b, and N (er), Figure 7c, are very similar
for all L., and even the resistivity, Figure 7a, matches
quite well after disorder average over ~4—5 copies.

We would argue that for the conditions studied, TCA
with L. = 3-5 is quite adequate in annealing the phonon
variables on L = 8. In fact when L. is large enough, so
that I' > 12t/ L2, the outer limit, i.e., system size L, is ac-
tually irrelevant. Updates based on small clusters can suc-
cessfully generate the appropriate configurations on large
lattices. The only reason large L is needed at all, for the
system as a whole, is to compute transport properties, or
check for long range order.

The thermally averaged density profile corresponding
to the MC in Figure 7 are shown in Figure 8. As in
Figure 6, the patterns along each row correspond to de-
creasing T, reducing from T' = 0.4 to 0.14 to 0.04. The first
row corresponds to TCA with L. = 3, the second with
L. = 4 and the third to L. = 5. All three systems have
the same realisation of quenched disorder {¢;}. Again, as
in Figure 6, the different TCA results are in excellent
agreement at higher temperature (first two columns) while
there are some differences at the lowest temperature due
to the difficulty in annealing.

The actual percent difference in the density field, be-
tween the three systems, averaged over the whole 82 sys-
tem is ~10-15%.

3.3 Double exchange model

The clean double exchange model has been widely studied,
using a variety of analytical approximations and numerical
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Fig. 8. Thermally averaged density profile: comparing TCA
based results on a 8 system using L. = 3,4,5. The top row
is for L. = 3, next for L. = 4 and lowest for L. = L = 5.
Temperature, left to right, are 0.4, 0.14, 0.04. The disorder
realisation {¢;} is the same in all cases.

techniques. We do not enter into a detailed recapitulation
of these results since we have already reviewed them in
detail [15] in an earlier paper. Here we focus primarily
on MC based results, since these are unbiased, although
necessarily finite size. The ground state of the clean DE
model is a saturated ferromagnet and in terms of trans-
port both the ferromagnetic and paramagnetic phase are
metallic.

In the limit Jg/t — oo the DE model maps on to a
spinless fermion problem, with ‘hopping disorder’ arising
from the background spin configuration. Since the strong
local coupling Jg couples the core spin orientation to
fermion spin projection, only the ‘locally aligned’ fermion
state is viable at each site (the other is at an energy Jg
above). The electron hopping between two sites depends
on the electronic eigenfunctions at each site, and so on the
spin orientation. The ‘projected’ Hamiltonian [15] turns
out to be:

H=—tY (gyviv+he)=—py n
(i) i
=ty ful eyl the)—pd ni (2)
(@ i

The +’s are spinless fermion operators. The hopping am-
plitude g;; = fije'?% between locally aligned states,
can be written in terms of the polar angle (6;) and

azimuthal angle (¢;) of the spin S; as, cos%cos%

—l—sin%sin %e‘i (¢i=¢3) Tt is easily checked that the
‘magnitude’ of the overlap, f;; = /(1 +S;.S;)/2, while
the phase is specified by tan ®;; = Im(g;;)/Re(gi;)-
Figure 9 shows MC results on the DE model, using
L. = 4 and varying the system size from L = 4 to L = 10.
This is unlike our earlier results on the Holstein model
where we kept the system size fixed and varied L., look-
ing for convergence. For the DE model, there is already
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Fig. 9. Magnetisation in the clean DE model with L. = 4,
and L = 4-10. The electron density is n = 0.32. The magneti-
sation profile obtained by extrapolation to L — oo is shown
as a dotted line. The arrow indicates 7. using the the moment
expansion based MC and finite size scaling by Motome et al.
Inset compares the TCA result to an earlier ‘effective Hamil-
tonian’ approximation made by us (see text).
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Fig. 10. Disordered DE model: magnetisation and resistivity.
with L. = 3,4,5, and L = 8. The electron density is n = 0.30.

MC data available [12] on large sizes. Figure 9 shows the
evolution of the magnetisation profile m(T') as L increases.

The large L extrapolation of this trend, at L. = 4,
suggests T, ~ 0.14. The result of moment expansion based
MC and finite size scaling [12] indicate T, &~ 0.12 at this
density. Although there is a difference between these re-
sults, the ability of TCA to approach the exact answer,
with substantially less computational effort, is evident.
The inset in Figure 9 compares an earlier approximation
used by us [15] (using a classical effective Hamiltonian for
the spins) with the TCA using L = 10, L. = 4. The im-
provement in TCA, particularly in capturing the T, scale
is obvious.

Figure 10 shows results on the DE model in the pres-
ence of weak disorder in the electron system. This model
has an additional term ZZ €;n; where the ¢; is binary dis-
order with strength +A as in the Holstein problem. The
data on magnetisation and resistivity in Figure 10 is shown
for N = 83, with L. = 3,4,5. As in the Holstein problem,
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Fig. 11. Total energy variations during the TCA-MC on the
Holstein model. The electronic parameters and temperatures
are marked on the Figure. This trace is quite similar to that ob-
tained in a typical ED-MC run, and the energy fluctuations re-
duce as expected with decreasing temperature. The inset shows
the thermally averaged energy at each T as a function of tem-
perature.

the profiles with L, = 4 and L. = 5 are barely distin-
guishable.

3.4 Computational indicators
3.4.1 Equilibriation

Since the TCA based MC does not compute the total
energy of the system in the process of updating, unlike
ED-MC, the process of equilibriation and stability of the
energy is not obvious.

To explicitly confirm the nature of equilibrium fluc-
tuations (and the absence of drift in the mean value) as
well as visualise the process of equilibriation in response
to a temperature step, we ran TCA with a simultane-
ous calculation of the total energy at the end of each MC
sweep. The results, for the Holstein model, are shown in
Figure 11. Notice that this requires diagonalisation of the
full Hamiltonian matrix Nj;c times, rather than Ny, N
times as required by ED-MC. Apart from assurance about
proper equilibriation this diagnostic allows us to track po-
tential hysteresis effects, i.e., difference between heating
and cooling, if a first order transition is involved.

3.4.2 Comparing AE

It may be useful to check out the claim that microscopi-
cally the TCA based calculation of AE quickly converges
with increasing N, (even if it is still < V) and with increas-
ing extrinsic disorder. To that effect Figure 12 analyses the
results on the Holstein model. We update the system us-
ing TCA with L, = 3-5 on a L = 8 system. For each L.,
and specified T', we choose a reference site randomly, and
whenever a phonon update is attempted at that site in the
course of the MC sweep, we not only compute the cluster
based energy difference AE. but also the ezact energy cost
of such a move A€gp based on the full system.
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Fig. 12. Error in energy estimate of MC moves. The indica-
tor § defined in the text, compares energy costs on the full
L? system with that based on L? clusters. Panel (a) shows
the T' dependence of § with increasing disorder, and the in-
set shows the L. dependence at A = 0. Panel (b) same as in
panel (a) with different parameters, marked on the Figure. In-
set to panel (b) variation of § with the effective disorder, 72,
combining the results in main panel (a).

The system evolves accoring to TCA, but we keep
track of these energy differences (at that site) and con-
struct the following error measure:

1

Nuyrc

A& — A€Eep

0(L., L) = A

(3)

where the averaging is over MC steps, and the ‘error’ ¢
implicitly depends on temperature, as well as all other
electronic parameters (in particular, disorder).

Figure 12 shows results, again on the Holstein model,
with L = 8 and L. = 4, panel (a). The state at T = 0
is a clean Fermi liquid for T = 0, the electronic states
are simple tight-binding states and, as expected, AE com-
puted on 83 and 43 have a fair difference, about 25%. This
“error” falls quickly with increasing temperature, as ther-
mal fluctuations in the x; increase (staying at A = 0),
and also reduces systematically on introduction of even
weak disorder A = 0.3-0.6. The inset to Figure 12a shows
temperature dependence of the error with varying L. at
A = 0. To construct an approximate measure, the typical
error, averaged over the temperature window is ~0.5 at
L.=3,~0.1 at L. =4, and ~0.05 at L. = 5.

Figure 12b shows 6 at n = 0.5,A = 2.0 (which is a
charge ordered state at low temperature) and n = 0.3, A =
3.0 (which is a polaronic insulator) again at L = 8 with
L. = 4. The error in the CO problem is non monotonic
because, unlike the Fermi liquid, the system goes into a
ordered chessboard phase at T' = 0 and this localisation
reduces the error. In the polaronic insulator phase the
error is below the 5% threshold at all temperatures due to
the strongly localised nature of electronic wavefunctions.
The inset to Figure 12b puts together the error variation
with respect to the effective disorder, n?, for the data in
Figure 12a for A = 0-0.6 with varying temperature. As we
have argued earlier there is a roughly ‘universal’ behaviour
of the error in terms of the effective disorder, irrespective
of its origin,’ and at L. = 4 an error <0.1 is obtained
whenever 72 > 1.0
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Note that & above is a measure of error in the energy
estimate, we have checked that the error in e #4¢ itself,
which controls the MC moves, between the 43 and 82 clus-
ter are much smaller than the error in AE. This explains
why the thermodynamic and transport results are accu-
rate even with L. = 4 in the clean system.

4 Concluding remarks

We have put forward the TCA based approach to adia-
batic problems as a ‘general’ many body technique, not
restricted to the specific examples studied here. Although
suggested here as an approach to annealing spins or
phonons in strong coupling lattice fermion models, TCA
is in the broad tradition of O(N) approximations [24] to
electronic structure calculations. The analytic basis for
most such approximations, based on a locality principle,
has been recently discussed by E. Prodan and W. Kohn
as the ‘nearsightedness of fermionic matter’ [25]. It would
be useful to further explore the significance of these ideas
for devising and refining TCA like strategies.

Let us reiterate the gain in system size that TCA en-
ables. If the total computational resource is such that
ED-MC can be done on size N4, and updates using cluster
size N, allow controlled access to the physics, then the sys-
tem size accessible using TCA is: Nycq = Nea(Nea/Ne)3.
For exploring the phase diagram of models we are in-
terested in N.q is typically 100, and in 2D acceptable
N, ~ 36. This suggests that the sizes accessible with TCA
are Nicq ~ 2000. This is an order of magnitude increase
in spatial resolution - and enables several new physical ef-
fects to be uncovered as we have discovered [20-22] using
the method. The acceptable N, of course has to be deter-
mined via scrupulous benchmarking. N, is modest, as in-
dicated above, when the effective disorder, either intrinsic
or due to thermal fluctuations, is moderately large. How-
ever, when accessing low temperature effects in a clean
system, or the low temperature boundary between two
phases in a clean system, IN. would need to be large since
the electronic states are well extended.

In conclusion, we have put forward and benchmarked a
new Monte Carlo technique for handling fermions strongly
coupled to classical degrees of freedom. The method relies
on the approximate ‘locality’ of the energy cost of a MC
move in a system with moderate disorder, allowing accu-
rate estimate of energy differences to be made using on
a cluster Hamiltonian instead of the full system. This al-
lows annealing of the classical variables on large lattices,
breaking the N* barrier that plagues exact diagonalisa-
tion based Monte Carlo. The approach makes no assump-
tions regarding the the starting Hamiltonian, except the
quadratic nature of the quantum degrees of freedom. This
paper focuses on benchmarks in the Holstein and double
exchange models, while the many new physical effects that
TCA allows us to uncover in these models are discussed
elsewhere.

We acknowledge use of the Beowulf cluster at HRI.
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